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Procedures for time-ordering the covariance function, as given in a previous paper [K. Kiyani and W. D.
McComb, Phys. Rev. E 70, 066303 (2004)], are extended and used to show that the response function
associated at second order with the Kraichnan-Wyld perturbation series can be determined by a local (in wave
number) energy balance. These time-ordering procedures also allow the two-time formulation to be reduced to
time-independent form by means of exponential approximations and it is verified that the response equation
does not have an infrared divergence at infinite Reynolds number. Last, single-time Markovianized closure

equations (stated in our previous paper) are derived and shown to be compatible with the Kolmogorov distri-

bution without the need to introduce an ad hoc constant.
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I. INTRODUCTION

In a previous paper [1], the Kraichnan-Wyld perturbation
expansion [2,3] was used to justify the introduction of a
renormalized response function connecting two-point covari-
ances at different times. The resulting relationship was spe-
cialized by suitable choice of initial conditions to the form of
a fluctuation-dissipation relation (FDR). This was further de-
veloped to reconcile the time symmetry of the covariance
with the causality of the response function by the introduc-
tion of time ordering along with a counterterm. We pointed
out that this formulation provides a solution to an old prob-
lem in turbulence theory: that of representing the time de-
pendence of the covariance and response by exponential
forms [4,5]. We showed that the derivative (with respect to
difference time) of the covariance with this time ordering
now vanishes at the origin. This allows one to study the
relationships between two-time spectral closures and time-
independent theories such as the Fokker-Planck theory of
Edwards [6] or the more recent renormalization group ap-
proaches. We also showed that the renormalized response
function is transitive with respect to intermediate times and
reported a different Langevin-type equation for turbulence.

In this paper we interpret the second-order response func-
tion as a mean-field propagator and show that in addition to
propagating two-time covariances it also links single-time
covariances. We then make use of its newly established prop-
erties to rederive the local-energy transfer (LET) response
equation [7] and show that it now contains a counterterm
which removes the singularity of previous propagator equa-
tions at t=t'. We also introduce a partial-propagator repre-
sentation and hence reformulate the LET statistical equa-
tions. Furthermore we specialize the two-time equations to
time-independent form by introducing exponential time de-
pendences and show that the closure is well behaved in the
limit of infinite Reynolds number. Last, by Markovianizing
time-history integrals, we end up with a Langevin-type
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theory which is compatible with the Kolmogorov spectrum
without the need to introduce ad hoc constants as in the case
of the EDQNM model [8] for example.

We begin by reviewing the subject of turbulence closures
and then go on to consider various aspects of applying the
FDR to nonequilibrium, macroscopic problems such as fluid
turbulence. We begin by stating the basic equations.

A. The basic equations

Following standard practice in this topic [9], we consider
the solenoidal Navier-Stokes equation (NSE) in wave num-
ber (k) space, as follows:

J . .
(5 + VOkz)ua(kat) =Ma,87(k) J d3.] uﬁ(.]’t)uy(k —‘],t),

(1)
while the continuity equation for incompressible fluids is
kouo(k,1)=0. (2)
The inertial transfer operator M ,z,(k) is given by
M o,(K) = (20)'[kgP o (K) + kP op(K)], (3)

while the projector P,4(k) is expressed in terms of the Kro-
necker & as

Kokg @)

P.sk)=6,5— .
a,B( ) afS |k|2

In order to introduce a statistical treatment, we shall denote
the operation of performing an ensemble average by angle
brackets, thus (---), and restrict our attention to isotropic,
homogeneous turbulence, with energy dissipation rate & and
zero mean velocity. As a result of this restriction, the cova-
riance of the fluctuating velocity field takes the form

(ua(k,Dugk’,t")) = C(k;t,t" )P o5(k) S(k + k'), (5)

where a, =1, 2 or 3. The corresponding single-time quan-
tity may be written as
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C(k;t,t) = C(k,1), (6)

where the single-time one-point covariance C(k,r) may be
interpreted as a spectral density and is related to the energy
spectrum by

E(k,t) = 47k*C(k,1). (7)

Using Eq. (1), we can also obtain an equation describing the
energy balance between spatial modes. To do this, we first
multiply each term in Eq. (1) by u,(-k,?). Then we form a
second equation from (1) for u,(-k,#), multiply this by
uy(k,t), add the two resulting equations together, integrate
over k', and average the final expression. This leaves us with

Jd
(5 + 2V0k2>Pw(k)C(k,t)
= Maﬁy(k) f d3.] Cu—ﬁ'y(_ k’j’k _j ;t)

=M yp,(k) J &) Copyk.j—k=ji1), (®)
where
CapyKojo— k= J:1) = (K. Dug(j.uy (- k= j.0)). (9)
and where we have also used the property
Moy~ K) = = Mo (K. (10)

If we then take the trace of Eq. (8) by setting o=« and
summing over a (noting that Tr P,z=2), and multiply each
term in Eq. (8) by 27k? we obtain

(% + yokz)E(k,z) =T(k,1), (11)

where

T(k,1) = 27k’ M o 5,(k) f d’j

X{Caﬁ‘y(_ k’j9k _j7t) - Caﬁ'y(k’j’_ k _j’t)}'
(12)

Evidently, in order to solve for the energy spectrum (or,
second-order moment) we need to know the third-order mo-
ment. Hence we are faced with a hierarchy of statistical
equations to be solved; and this is, of course, the notorious
closure problem.

B. Eulerian statistical closures for isotropic turbulence

In order to study isotropic turbulence, we have to add a
noise term or stirring force to the right hand side of the NSE,
as given by Eq. (1). Denoting this term by f,(K,7), we
specify it in terms of its distribution, which we take to be
Gaussian, and its covariance, which we take to be of the
form
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ok D)f5(k',1")) = W(k)(2m) P ,5(k) Sk + k') 8t +1').
(13)

We note that W(k) is a measure of the rate at which the
stirring forces do work on the fluid and for stationarity must
satisfy the condition

J i A7k*W(k)dk = € = f ’ 2Vk*E(k)dk. (14)
0 0

The perturbative treatment of the equations of motion is
based on an expansion about a Gaussian zero-order velocity
obtained by solving the NSE with the nonlinear term set to
zero. The resulting expansion shows clearly [3] the effect of
nonlinear mixing such that any correction to the zero-order
field must have a non-Gaussian distribution, which indeed is
implied by the existence of the third-order moment (and the
existence of intermodal energy transfer). Renormalization of
the perturbation expansion corresponds to either partial sum-
mation or term-by-term reversion: for details reference
should be made to the paper by Wyld [3] and the books by
McComb [9] and Leslie [5]. Our present interest is restricted
to the second-order equation for the velocity covariance,
which is obtained by this procedure, thus:

Jd
[— + vkz} Clk;t,t")
ot

=fd3jL(k,j)lJf ds R(k;t',s)C(j;t,5)C(|k = j|;t,5)

0

t
—f ds R(j;t,5)C(k;s,t")C(|k — j ;t,s)}, (15)
0
and on the time diagonal

3
(— + 2Vk2> C(k,t)
ot

t
=2fd3jL(k,j) X f ds R(k;t,s)R(j;t,5)R(|k = j|;t,5)
0

,8) = Clk,s)C(|k - j

8)], (16)

where the coefficient L(k,j) is given by
L(kaj) == 2Maﬁy(k)Mﬁa5(j)Py§(k _j) . (17)

This may be evaluated in terms of the scalar magnitudes k, j
and u=cos 6, where 6 is the angle between the two wave
vectors k and j; thus

[k + ) = kj(1 +2u?)](u? — Dkj

L(k,j) =
(k.J) R+ —2kjp

(18)

It should also be noted that the coefficient L(k,j) is symmet-
ric under interchange of the two wave vectors: we shall use
this fact presently to demonstrate conservation of energy.
At this stage we should note that for this to be a closed set
of equations for the covariance C, one has to have an addi-
tional equation to determine the response function R. Equa-
tion (15) was originally derived by Kraichnan. This closure
was completed by an equation for the response function
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R(k;t,t"), and is known as the direct interaction approxima-
tion (DIA). The basic ansatz of DIA is that there exists a
response function such that

12
Su (K, 1) = f Rop(k;t,t") Of gk, t')dr', (19)

and that this infinitesimal response function can be renormal-
ized. The resulting response equation is

J
[5 + vk2:|R(k;t,t’) + f &*j L(k,j)

t
xf dt"R(k;t",t"R(j;t,t")C(k —j|;t,") = 8t - t').
t/

(20)

Later Edwards derived a time-independent covariance equa-
tion by the self-consistent introduction of a generalized
Fokker-Planck equation as an approximation to the (rigor-
ous) Liouville equation. We shall refer to this theory as the
EFP theory, and this along with the more general self-
consistent field (SCF) theory of Herring [10] and the DIA
make up our trio of pioneering spectral closures. Further dis-
cussion can be found in the books [5,9]. In the literature,
much attention has been given to the fact that, although these
theories have many satisfactory features, they are all incom-
patible with the Kolmogorov 1941 (K41) power law for the
energy spectrum E(k) [11]. However, in the present paper we
shall concentrate on only a few key points. The first of these
is that the covariance equation of the EFP theory can be
shown to be equivalent, for the stationary case, to the
second-order truncation of the Kraichnan-Wyld perturbation
theory, if we assume exponential time dependences. That is,
the EFP covariance equation can be obtained by substituting
into Eq. (15) the following assumed time dependences:

Ck,t—t") = C(k)exp{— w(k)|t—1'|}, (21)

and

R(k,t—1t") =exp{— w(k)(t=1")} for t = ¢'

=0 forr <t'. (22)

Then, integrating the right hand side of Eq. (15) over inter-
mediate times, one obtains (with some rearrangement)

C(|k - j])[C(k) - C(j)]
o(k) + 0(j) + o(k —j| ’
(23)

W(k) = 2vk*C(k) = f d&*j L(k,j)

where we have added the term W(k) to the energy balance in
order to sustain the turbulence against viscous dissipation.
Equation (23) is just the form originally derived by Edwards
[6].

This simple form is helpful in understanding certain prop-
erties, such as the conservation of energy by the nonlinear
term and the behaviour of the system in the limit of infinite
Reynolds number. For instance, integrating both sides of Eq.
(23) with respect to k and invoking Eq. (14) leads to
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e—¢e=0, (24)

where the vanishing of the right hand side results from the
antisymmetry of the integrand under interchange of k and j.
This result helps us to interpret the EFP response function or
eddy decay rate R(k) which takes the form [6]

C(k - )
w(k) + o(j) + ok - j|

R(k)= f d*j L(k.j) (25)

At the time this was interpreted as allowing one to write the
energy balance equation as

W(k) - 2vk*C(k) = R(k)C(k)
C(k-jhc)
o(k) + () + ok - j|’
(26)

- J d*j L(k,j)

or the eddy decay rate represents the loss of energy from
mode k due to energy transfers to all other modes. The situ-
ation is more complicated for the DIA, but the analogous
comment has been made by Kraichnan [2] that the energy
loss from mode k is directly proportional to the excitation of
that mode, viz., C(k;zt,t’).

Later, it was pointed out that an ad hoc modification could
be made to the EFP theory by noting that the entire energy
transfer term [i.e., the right hand side of Eq. (23)] acts as an
energy loss in some regions of wave number space whereas
in others it behaves as an input. This led to a definition of the
response which was compatible with the Kolmogorov spec-
trum [12,13] and this was subsequently generalized to the
two-time local energy transfer or LET theory [14].

We have restricted our attention to Eulerian closures in
this section but we should mention the Lagrangian closures
which also claim compatibility with K41. In the interest of
completeness we shall say something about these when we
give an overview of the subject in the Conclusion.

C. Fluctuation-dissipation relations

It is well known that the response of microscopic systems
in thermal equilibrium to small perturbations is fully deter-
mined by the covariance of the system fluctuations about
equilibrium. In our present notation, the relationship may be
written as

C(k;t,t") = R(k;t,t")C(k;t',1"), (27)

which is the fluctuation-dissipation relation. This result was
extended by Kraichnan to nonlinear dynamical systems in
thermal equilibrium [15,16] and by Leith [17] to inviscid
two-dimensional chaotic flow. Also, Deker and Haake [18]
give several examples of classical processes for which a
FDR will hold and these include (of particular relevance to
the present discussion) forced viscous flows where the sta-
tionary probability distribution is Gaussian. In realistic cases,
such flows will have a non-Gaussian distribution due to non-
linear mode coupling. However, one case of interest arises in
a pioneering application of renormalization group methods to
stirred fluid motion [19], where a fluctuation-dissipation re-
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lationship is found to hold in the limit k— 0. That is, the
long-wavelength behavior at lowest nontrivial order of per-
turbation theory.

The paper by Leith is particularly interesting. While rec-
ognizing that the FDR cannot apply exactly to real fluid tur-
bulence, it puts forward rather convincing heuristic argu-
ments for believing that it could be a reasonable
approximation. Also, it cites the investigation of Herring and
Kraichnan [20] in support of this view. Here the nonstation-
ary generalization of the SCF [21], which differs only from
the DIA in the use of the FDR, gives very similar results to
it. We shall discuss this use of the FDR in more detail later,
when we consider its role in the LET theory.

Leith’s optimistic view not only inspired successful prac-
tical applications of the FDR to study climate sensitivity [22]
and viscosity renormalization [23], but was also seen as
seminal in stimulating an important series of papers which
examined the applicability of the FDR from the point of
view of dynamical systems theory [24-27]. The overall con-
clusion of these papers can be stated as follows.

(1) A general relationship exists for the response of a
chaotic system in terms of its stationary probability distribu-
tion provided that the system is dynamically mixing.

(2) If the stationary probability is Gaussian in form, then
the relationship reduces to the FDR as given by Eq. (27).

Of course in real fluid turbulence the probability distribu-
tion is not Gaussian, nor is it known exactly. However, as we
have shown in [1], the FDR can be derived for turbulence to
second order in renormalized perturbation theory and hence,
if used appropriately, is consistent with a closure approxima-
tion of that order. We shall return to this point later.

D. The time-ordered FDR

In [1] we postulated that in the context of the Kraichnan-
Wyld perturbation theory we may rewrite the existing rela-
tionship between the zero-order covariance and zero-order
response in a renormalized form as

Cok;t,t") = 0(t — 5)R,(K;1,5)C (k5,1 ), (28)
or in its isotropic version as
C(k;t,t") = 6(t — s)R(k;t,5)C(k;s,t"), (29)

where the Heaviside unit step function 6(r—s) explicitly
states the causality condition. As yet we have taken no deci-
sion about the ordering of the two times ¢ and ¢, and thus the
symmetry under interchange of ¢ and ¢’ is untested in Eq.
(29).

If we explicitly state the time ordering as 7>¢' say, then
this is equivalent to applying 6(r—¢") to both sides of Eq.
(29):

0(t—1t")Clk;t,t')=0(t—1t")0(t — s)R(k;t,s)C(k;s,t"),
(30)
and this is the beginning of the LET theory. In it, we have
postulated the existence of a renormalized propagator and

have made use of the Heaviside unit step function to make
the time-ordering manifest.
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The generalized fluctuation dissipation relationship is ob-
tained by setting s=¢" in Eq. (30) to get

0t —1")C(k;t,t") = 6(t = t")R(k;t,t")C(k;t' 1), (31)

where the time ordering is set by the requirement s=1¢".

In [1] we introduced a representation of the covariance
which preserves its symmetry under interchange of time ar-
guments; thus

Clk;t,t"y=0(t=1t")C(k;t,t") + 0(t' —1)Cl(k;t,t")
- I,[’C(k;t’t,)' (32)
We can easily show that this representation does what it is
supposed to do by looking in turn at the separate cases
t<t',t>t', and t=¢', and this is left for the reader.
Now, using Eq. (30) to expand the right hand side of Eq.
(32) we obtain
Clk;t,t")=0(t—1")0(t - s)R(k;t,s)C(k;s,t") + 6(t' —1)0(¢'
= p)R(k;t",p)Clk;p,1) = 6,1 C(k;t,t"). (33)
Or, this result may be written more like the FDR by instead
using Eq. (31) to construct it,
Clk;t,t")y=0(t—1t")R(k;t,t')C(k;t',t")
+0(t' —=)R(k;t",1)C(k;t,t) — 6, Clk;t,t").
(34)
The symmetry of both these covariances Eqs. (33) and (34)
can be broken by applying a unit step function to both sides.

This will yield either (30) or (31), depending on which time
ordering we choose.

II. THE PROPERTIES OF THE MEAN-FIELD
PROPAGATOR

In this section we begin by reviewing the introduction of
a velocity propagator, as in the original formulation of the
LET theory [14] and note that in this context the propagator
introduced in [1] is a mean-field propagator.

A. The velocity field propagator

From the exact solution of the solenoidal NSE (see [9]),
we have

t
(k1) = RO(K; 1,9)u, (K, 5) + {x f d"RO(K:1,1")

X j d3] Mo’ﬁ'y(k)uﬁ(j’t,,)uy(k _jstﬂ):| s (35)

A0) . .
where R&; is the “viscous” or zero-order response tensor and

the caret is used to emphasize that this is the “response”
associated with the instantaneous velocity field.

Expanding u,(k,7) in a perturbation series around a
Gaussian solution and equating zero-order terms we can say
that the equality

uO(k,1) = RO(K:1,5)u® (K, 5) (36)

illustrates the propagatorlike nature of Iég(k;t,s). Then
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from looking at the form of Eq. (35), we can postulate the
existence of a renormalized propagator such that we obtain a
renormalized version of Eq. (36):

Uo(K,1) = R oo (K3 1,8) 1 (K, ). (37)
Multiply Eq. (37) by ug(-k,t')

ul(k,ug(-k,t") = Iéw(k;t,s)ug(k,s)ulg(— k,t") (38)
and average this equation to obtain
Copk;t,t") =R, (k;t,5)Cop(k;s,t'), (39)

where the propagator is statistically independent of the ve-
locity field and we have used the mean-field approximation

(Roo(K31,5)) = R (K51, 5). (40)

As usual, Eq. (39) can be turned into a simpler scalar form
by using the properties of isotropic tensors

Clk;t,t") = O(t — s)R(k;t,5)Clk;s,t"). (41)

The transitivity of Rar(k;t,s) with respect to intermediate
time can be proved by applying Eq. (37) to the right-hand
side of itself,

(k1) = R (K:t, )R (ks u,(k,t'),  (42)

and realizing that we could also have written this as

(k1) = R (k1,1 u (k1) (43)
implying the result

Rop(K:1,1") = R (K 1,5)R 5 (K 5,1") (44)
and r>s>1'.

B. The mean-field propagator
The simple property of the propagator
Rlk:t,H) =1 (45)

can be easily shown to be necessary by setting s=¢ in Eq.
(30). Other properties can be obtained by equating the right
hand side of Eq. (30) with the right hand side of Eq. (31):

O(t—1t")R(k;t,t')C(k;t',t')=0(t—1")0(¢
—5)R(k;t,5)C(k;s,t).
(46)

Expanding the right hand side of Eq. (46) using Eq. (34) we
obtain

O0(t—1t")R(k;t,t")C(k;t',t")=[60(t—1")0(t — s)R(k;t,s)
X O0(s—t")R(k;s,t’")C(k;t',t")]a
+[6(t—1")0(t - s)R(k;1,5)
X 0(t' — s)R(k;t',s)C(k;s,s)]b
—[6(r—1")0(t — s)R(k;t,5) X &, (Clk;s,t")]c. (47)

Dividing the right hand side into three groups of terms la-
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beled, respectively, a,b, and ¢, we will now look at Eq. (47)
for two separate cases: case 1, t>s>1', and case 2 t=¢'
>,

1. Transitivity with respect to intermediate times

Here we consider case 1 corresponding to t>s>¢" and
implying that »=0 and ¢=0 in Eq. (47). This will leave

0t —t")R(k;t,t")Clk;t',t") =[6(r — 1) 6(r — s)R(k;1,5)
X 0(s —1")R(k;s,t")C(k;t',t")]. (48)

We now use the contraction property of the Heaviside func-
tion

t—s)0(s—1t")=0(t—1") (49)
to write Eq. (48) as
0(t = t")R(k;t,t")C(k;t',t")
=0(t—1t")R(k;t,5)R(k;s,t")C(k;t',t"). (50)

From this above result, we can deduce the transitive property
of the propagator

R(k;t,t")=R(k;t,s)R(k;s,t"). (51)

This result also tells us that the transitivity of the propagator
holds only for times s which are intermediate between the
two times ¢ and t'. This makes sense because otherwise, if s
was outside the range between ¢ and t', we would have
propagation backwards in time which violates causality. This
is a result which was previously only assumed [14,28] on the
basis that it could be expected to follow from the corre-
sponding relationship for the velocity-field propagator, and is
now proved.

2. Linked single-time covariances

Next we consider case 2 t=t">s, which corresponds to
a=0 and c=0, leaving

0t —1t")R(k;t,t')C(k;t',t')=[60(t—1t")0(t — s)R(k;t,s)
X 0t —s)R(k;t',s)C(k;s,s)].
(52)

This result is important because it links two single-time co-
variances. This fact becomes clearer if we take the special
case of t=¢'. This gives

C(k;t,t) = 0(t — s)R(k;t,5)R(k;t,5)C(k;s,s), (53)

implying that we need two propagators to link single-time
covariances. Defining

R(k;t,s) = R(k;t,5)R(k;t,5), (54)
Eq. (53) can be modified to make it look like Eq. (29)
C(k,t) = 6(t — $)R(k;1,5)C(k,s). (55)

Again, the presence of the unit step function ensures that the
covariance can only propagate forwards in time.
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III. DERIVATION OF THE LOCAL-ENERGY TRANSFER
RESPONSE EQUATION

The starting point for the LET theory is the second-order
renormalized covariance equation as given by Eq. (15). We
can now proceed in two ways.

(1) The first is to substitute Eq. (34) in Eq. (15) and then
choose t>1'.

(2) The second is to choose #>¢" and multiply both sides
of Eq. (15) by 6(r—t") to show the range over which the
equation will be valid. Then follow this by using the FDR, in
the form of Eq. (31), throughout.

Note that it is important that we do not set r=t" in the
covariance equation (15) as we can only do this after evalu-
ating the derivative of the two-time covariance.

Both methods are equivalent but the second is the easier
to use in practice. Thus we begin by choosing the time or-
dering to be =t and multiplying Eq. (15) by 6(z-¢'),

Jd
0t — t’)a—tC(k;t,t') +0(t =1 vk>Clk:1,1")
=0(t—1) f d’j L(K.j)

t/
X {f ds R(k;t',s)C(j:1,8)C(|k - j|:1,5)

0

—f ds R(j;t,s)C(k;s,t')C(|k —j ;t,s)}. (56)
0

Let us look at the first term of the left hand side of Eq.
(56):

J J
0(t—1t")—Clk;t,t')=—0(—1t")C(k;t,t")
ot ot
Clk;t t’)iﬂ(t ')
ot
J
= Eﬁ(t— t"R(k;t,t")C(k;t',t")

- C(k;t,t’)%ﬂ(t—t'), (57)

where we have applied the product rule in the second line,
and the FDT Eq. (31) in the third line. After substituting the

I, = lﬁ(t— t’)j ds R(j;t,5)0(s —t') X C(k;s,t")0(t —s)C(|k - j

+ |:0(t—t')ft ds R(j:t,5)0(t' —s) X C(k;t',s)0(t—s)C(|k - j
0
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differential of the Heaviside unit step function
J
Eﬂ(t— t")y=68(t-1"), (58)

we reach our final form for this part of the response equation.
Thus [left hand side of Eq. (56)]

Jd
=a—t¢9(t —t"R(k;t,t")C(k;t',t") = Clk;t,t")6(t—1")

+ k2 0(t = )R (k;t,t")Ck;t' 1), (59)

where the FDR (31) was used on the second term of the left
hand side of Eq. (56) also.

Now we evaluate the second time integral on the right
hand side of Eq. (56), which we label as I5:

L= 0(t—t’)f ds R(j;t,5)C(k;s,t")C(|k —j|;t,5). (60)
0

We need to have the appropriate € functions in front of
the covariance so that the broken time-reversal symmetry
becomes manifest. This information is present in the argu-
ments of the propagator and in 6(t—t'). So for C(|k

_j ;t’s)

0(t—t’)f ds C(|k —j|;t,s) = G(t—t’)Jtds 0(t-s)C(|k
0 0

—ilst.s) (61)

and for C(k;s,t")

t
0(t—t’)f ds C(k;s,t")
0
t !
=0(t- t’)J ds Clk;s,t") + 0(t — t’)f ds C(k;s,t")
0 t'
[/
= 0(t—t’)f ds 0(t' —s)C(k;t',s)+ 0(t—1t")
0

Xf;,ds O(s—1t")Clk;s,t"), (62)

where we have used the property C(k;z,t")=C(k;t’,t) in the
fourth line. With these results we can now write Eq. (60) as

;t,S)]

;t,s)]. (63)

The evaluation of the first integral on the right hand side of Eq. (56) follows similarly so that the final LET response

equation is given by
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d
E&(t —t"R(k;1,t")Ck;t',t") = Clkst,t") 8t —t') + vk*O(t — t )R(k;t,¢")C(k;t' 1)

=fd3jL(k,j)9(t—t’){lft ds R(k;t',5)0(t — s) X C(j;t,5)0(t — s)C(|k — j

0

0

Multiplying both sides by 6(r—t'), dividing by C(k;t’,r’),
and noting that

0(t—1")C(k;t,t")

C(k;[,,[/) = 0(t_t,)R(k;t’t,)’ (65)

from the FDR, in the form of Eq. (31), we reach the simpli-
fied form with the broken time-reversal symmetry manifest,

ot - t')((% + vk2> 6(t—t")R(k;t,t")

—0(t=1t")R(k;t,t")o(t—1") + [f &jLk.,j)o(—1")

Xf ds R(j:t,s)R(k;s,t")0(t — s)C(|k — j ;t,s)}

(a7 a—s)C(k—lins)
_fdJL(k,J)a(t—t )jo ds ckr 1)

X A{R(k;t',s)0(t — s)C(j:t,s)

—R(j;1,5)0(t' — 5)C(k;t',s)}. (66)

A. Comparison with previous forms

Apart from the addition of the second term on the left
hand side

—0(t—1t")R(k;t,t")o(t—=1"), (67)

Eq. (66) is the same as the LET response equation which
appears as Eq. (3.19) in [7], Eq. (20) in [29], and Eq. (7.146)
in [9]. The natural addition of this extra term as a conse-
quence of time ordering fixes the problem of the singularity
in the time derivative of the response equation (66) which
occurs when one takes #=t". More important, if we compare
Eq. (64) with the DIA response equation (20), the additional
terms on the right hand side of Eq. (64) cancel the infrared
divergence and ensure compatibility with the Kolmogorov
K41 spectrum.

IV. THE TWO-TIME LET THEORY

A. Partial-propagator representation

We may write the propagator in a representation which
separates the discontinuous part as a Heaviside unit step
function; thus

- |:ft ds R(j;t,s)0(t' —s)C(k;t',s)0(t — s)C(|k — ;t,s)} - lf ds R(j;t,5)0(s —t') X C(k;s,t")0(t —s)C(|k - j

;t,S)]

t

:1,8) |}

(64)

R(k;t,t")y=0(t—t"R(k;t,t"), (68)

where R(k;z,t") is a representation of the propagator but
without the discontinuity at 7=¢". So using (68) and the FDR
(27) to turn two-time covariances into single-time form, Eq.
(64) for the response function becomes

J
o1 — ”(5 + vk2>R(k;t,t')

=—6(t—t’)fd3jL(k,j){f dsR(k;s,t")

,S)]

+ 0(t—z’)fd3jL(k,j)fr ds{R(k;t’,s)R(j;t,s)
0

X R(3t,5)R(|k -]

36,5)C(|k = j

. C(|k_J ,S) .
’t’s)—C(k,t’) [CGs) - C(k,S)]}, (69)

X R(|k -]

for t=1". The counterterm has been canceled by use of the
product rule in the time-derivative.

B. The LET closure equations

The LET equations may now be summarized as follows.
For the two-time covariance, we have Eq. (15),

d
(—+ vk2)C(k;t,t’)
at

0

=fd3jL(k,j){ft ds R(k;t',s)C(j;t,5)C(|k = j|;t,5)

t

—f ds R(j;t,5)C(k;s,t')C(|k - j ;I,S)}, (70)
0

and likewise Eq. (16) for the single-time covariance,

(a% + 2vk2>C(k,t) =2 f &’j L(k.j)

t
XfdsR(k;t,S)R(i;t,S)R(|k—j )
0

X [C(j,5)C(k -

,5)
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- C(k,S)C(|k _j

)1, (71)

where we have invoked the FDR so that all two-time cova-
riances are turned into one-time covariances.

For the response function we can use either Eq. (64) or
Eq. (67). The above equations along with the generalized
fluctuation-dissipation relation,

Ot —1t")Clk;t,t")=0(t—t")R(k;t,t")C(k,t") (72)

from which the LET is derived, and the single-time covari-
ance link equation

C(k,t) = 6(t — s)R(k;t,5)R(k;t,5)C(k,s), (73)

complete the set of LET equations.

The LET equations have been applied, along with those of
the DIA, to the problem of free decay of isotropic turbulence
from arbitrary initial conditions, over a wide range of Taylor-
Reynolds numbers [30,31]. In these investigations, the cova-
riance equations on and off the time diagonal were solved
simultaneously with the relevant response equation. It was
later realized that for the LET theory, the response equation
could be replaced by the FDR, as given by Eq. (70), and this
reduced the computational effort well below that of DIA; see
[7,29]. This work was for three-dimensional turbulence,
while an extensive investigation of the two-dimensional case
has also been carried out for DIA, SCF, and LET theories
[32-34].

C. Behavior in the limit of infinite Reynolds numbers

The later two-time versions of the LET theory claimed
that their solutions were compatible with K41. However, this
was never shown explicitly. Compatibility with K41 is now
demonstrated for the LET response or propagator equation as
given by Eq. (69). We begin by writing Eq. (69) in stationary
form. This means that all (single-time) covariances become
time independent:

C(k,1) — C(k), (74)

and we write the propagator in relative time coordinates
Rk;t,t')=R(k;t—1t'). (75)

Next we assume the exponential form for the propagator
Rik;t—1") =exp[- w(k)(r=1")], (76)

where, as before, w(k) is the total eddy-decay rate. These
changes result in the response equation becoming:

0t — t')((% + Vk2>exp[— w(k)(t—1")]
- [ woo) [ @ napei—in [ as

X expl- w(k)(s = 1) = w(j)(t = 5) - w([k = j[)(r - S)]}

+{0(t—t’)fd3jL(k,j)ft ds
0

PHYSICAL REVIEW E 72, 016309 (2005)

X {CXP[— w(k)(t' = 5) = ()t~ 5) = w([k = j|) (7~ 5)]

Clk-jh. . .
W [CU)—C(k)]H. (77)

Doing the differentiation, setting t=t’, and carrying out the
time integration results in an equation for w(k):

C(lk - jDICG) - CK)]
C[wk) + () + ok = j])]

w(k) = vk + {f d*j L(k.j)
X (1 —exp{-[w(k) + 0(j) + o(|k —j|)]t})} . (78)

where one can ignore the last term involving the exponential
as we are considering stationary systems which are time in-
dependent. Another way to justify the neglect of this term is
to realize that it originates from the fact that we chose to
have the initial conditions at =0 rather than the more usual
t=—00,

To show that Eq. (78) is not divergent we complete our
analysis by substituting the inertial range and infinite Rey-
nolds number forms for C(k) and w(k):

a82/3

4ar

Clk) = K13, (79)

w(k) = Be"PI25, (80)

where a and 8 are constants, and by writing the integral in
k,j,p variables
(k) = vk>
kP = DI + %) — k(1 +2p)]
+1 | di | du ST
k“+j —=2kju
aB ek —j| 1AL - 11
IR 4+ 25 4 k- PR

(81)

where u is the cosine of the angle between the two vectors k
and j.

There are three possible sources of divergence (of the
infrared type) in this expression. However, from Eq. (81), it
may be seen that the k—0 and j— 0 limits do not pose a
problem. The final possible source of trouble |k—j|—0 can
be resolved by realizing that the term [j~'*~k~113] cancels
the divergence caused by the [k—j|~!!/3 term. This is shown
by expanding

[k —j™1"7 = (& + 2 = 2kjw) ', (82)

and substituting in Eq. (81). One then Taylor expands k
around j to leading order in e=k—j in both the numerator
and denominator of the integrand in Eq. (81). This results in
the integrand becoming
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(11/3)aB e
(2)17/6

[2/%m(1 = ) = 21 = 1) (1 = )%
612,25 4+ (22)3(1 = )] )
(83)

and focusing on the term (u?—1)(1-u)""%€ we can see that
as e— 0, the integrand goes to zero, except at w=1 where the
integrand is singular. This singularity can be avoided if we
write the limits of the u integral as

1 11
f dp— f du, (84)
-1 -1

where T1 implies in the limit approaching 1 from below.

This completes the analysis in the limit of infinite Rey-
nolds number. Further information on the above technique
can be found in [9].

V. SINGLE-TIME MARKOVIANIZED LET THEORY

The relevant single time LET equations are the single-
time covariance (using the partial propagator form)

(% + 2vk2)c(k,t) =2 f d*j L(K.j)

t
XfdsR(k;t,s)R(i;t,s)R(lk—j 31,5)
0

X [C(,9)C(|k - j|s)
= Clk,s)C(|k = j.5)], (85)

the response equation

Jd
0t — t’)(a—t + vk2)R(k;t,t’)

=—9(z—r’)fd3jL(k,j)“ ds R(k;s,t")

,S)}

+0(t—t’)fd3jL(k,j)ft' ds{R(k;t’,s)R(j;t,s)
0

X R(jst.)R(|k ~

i1,8)C(k —j

L Ll (LTI C(k,s)]}, (36)

X R(k—j

C(k,t")
and the single-time covariance link equation
C(k,t) = 0(t — s)R(k;t,5)R(k;t,5)C(k,s). (87)

Making a Markovian approximation we can write Eq.
(85) as

k—j

P
(5 + 2vk2> C(k,t)=2 f d*j L(k,j)D(k,j, 31)

X C(|k - j[.0[C(j.1) = C(k.1)],
(88)

where the Markovian approximation amounts to updating
each C(s) to C(z), and where

PHYSICAL REVIEW E 72, 016309 (2005)

t
D(k.j, [k - j ;t)=f ds R(k;1,5)R(j;1,) Rk = j2,5)
0
(89)
is the memory time.
We now need some way of computing D(k,j,|k—j|;7);

that is, of updating it. We do this by differentiating Eq. (89)
with respect to ¢,

7 Dk
ot ol

k—j

=1+ ftds{(iR(k;t,s)>R(j;t,s)R(|k
o L\at

i1,8) + R(k;t,s)(%R(j;t,s))Rﬂk

-J

J
—j ;t,s)+R(k;t,s)R(j;t,s)<5R(|k

;m))]. (90)

To evaluate Eq. (90) we need to know the dynamical be-
havior of R(k;z,s). We obtain this from Eq. (86). Proceed by
writing Eq. (86) in Langevin form

-J

d
o(t - z')[a—t + vk? + n(k;t,t’)}R(k;t,t’) =0, (91)

where

12

n(k;r,t'):0(r—t')fd3jL(k,j)U ds R(k;s,t")

,S)]

—9(t—t’)fd3jL(k,j)ft/ ds{R(k;t’,s)R(/’;t,s)
0

X R(jit.9)R(|k ~

;1,8)C(k—j

g SIS o c<k,s>]}

X R(|k -]

C(k,t")
(92)

is the turbulent eddy-decay rate and is obtained by compari-
son with Eq. (86).
Rearranging Eq. (91) we obtain

d
ot — t')&—tR(k;t,t’) =— 0t —1")[ vk + plk;t,t ) IR (k;t1,1"),

(93)

and this allows us to write Eq. (90) as

iD(k ik —j
gr ol

) =1 —f ds{R(k;t,9)R(j;t,s) R(|k — j
0

31,8)

X [(vk? + vj* + vk = j|?) + n(k;t,s)
+7(j;.5) + 9k = j[s2,9) ]} (94)

To be able to calculate Eq. (94) we need to take the Markov-
ian step
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n(k:t,s) — nlk.t). (95)

We can justify this step by looking at Egs. (87), (88), and

(91). Equation (91) has a general solution
Rk;t,t") =exp{— k> (t—1') — ft ds n(k;s,t')}. (96)
y
If we write Eq. (88) in the suggestive form
[&% PN Zf(k,t)} Clk) =0, (97)

where

;1)

§(k,t)=—fd3j L(k.j)D(k.j,

C(k) [C(J) Clk,0], (98)

then we can write the general solution of Eq. (97) as

Clk,t) = exp{— 20k (t—1") - 2f ds g(k,s)}C(k,r’)

= [exp{— vk (t—1t') - Jt ds §(k,s)}]2C(k,t’).

(99)
Writing Eq. (87) as
Clk,t) = 0(t — ' YR (k;t,t"YR(k;t,t")C(k,t")  (100)

and comparing with Eq. (99), this suggests
t
Rk;t,t") =exp{— K>(t—1") —f ds §(k,s)}. (101)
t’
But comparing this with Eq. (96), we see that

fds §(k,s)=f ds n(k;s,t'). (102)

Comparing the forms of &(k,s) and 7(k;t,s), Eqs. (92) and
(98), we find

&(k,s) = n(k;s,s). (103)

Also in Eq. (102), since both 7 and ' are arbitrary, such that
we can make ~1', we may make the important assumption
that

n(kss,t") = Ek,s) = n(k;s,s) = nk,s).

This tells us that in the case of the 7(k;s,?’) term, we need
only concern ourselves with the on-diagonal terms'
n(k;s,s)=n(k,s), which is a Markovian simplification.

(104)

"Leslie [5] in deriving an equation for 7(k,7) from the DIA, av-
erages over the second time argument, i.e., 7(k,7)=[{ds n(k;t,s),
whereas we simply take the on-diagonal terms. In effect Leslie’s
n(k,t) should be written as 7(k,7) showing that it is an averaged
quantity.

PHYSICAL REVIEW E 72, 016309 (2005)
Going back to Eq. (94), we can now write it as

[(vk? + vj* + vk = j|?) + n(k,1)

J
—D(k,j,
ot

—-jl:n,
(105)

which along with Eq. (88) can be used to evolve the memory
time.
Single-time Markovianized LET equations

The final equations for the single-time evolution may now
be summarized as

d
(— + 2vk2>C(k,t) =2 f &*j
t

D[C(j.1) = Clk,1)]
=—295(k,t)C(k,1), (106)
n(k,t) =~ J d&*j L(k,j)D(k.j, ;1)

C(

X . ) [C(; t) - C(k,1)] (107)
and
(%D(k,j, —jlit) =1 =[(Wk* + vj® + vk = j|») + (k1)
—jlio).

(108)

These equations can be solved numerically with some suit-
able choice of initial conditions:

E(k,t=0)

C(k,t=0)= ,
( ) 47k?

(109)
where E(k,t=0) is an arbitrarily chosen initial energy spec-
trum, and

D(k,j, =0)=0. (110)

The last of these initial conditions follows from the definition
of D(k,j,|k=j|;7) in Eq. (87) and this in turn implies, from
Eq. (107), that (k,t=0)=0, as is expected, because the cas-
cade has not yet begun at r=0.

This set of equations is almost identical to those of the
test field model (TFM) [35], the exception being an extra
term on the right hand side of (107) when compared with the
corresponding TFM equation. As before, this extra term
guarantees compatibility with K41. However, it remains to
be seen how well the single-time LET theory performs when
computed for the standard test problems.

VI. CONCLUSION

We have seen that our time-ordering procedures, as re-
ported in [1] have allowed us to tidy up some aspects of the
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LET theory. In particular, we have been able to derive a
single-time form of the theory, which we have Markovian-
ized so that it can be compared with well-known models
such as the TFM or EDQNM. Such a comparison will re-
quire numerical computation and this will be the subject of
further work. However, we shall conclude here with some
remarks about the role of the fluctuation-dissipation relation
in the Euleran two-time closures, DIA, SCF, and LET theo-
ries and then give a brief overview of the subject of spectral
closures.

As we have seen, LET uses the FDR either to derive the
response equation or to be used instead of a response equa-
tion. That is, with the second-order covariance equations for
C(k;z,t') and C(k;t,1) we can specify R(k;z,t") through the
FDR and this gives us the requisite set of three equations.

In contrast, SCF theory works with Eq. (16) for C(k;z,1),
the DIA response equation (20) for R(k;7,t’), and the FDR to
calculate C(k;t,t"). Calculations based on these three equa-
tions are known to agree quite closely with those for the
DIA, consisting of Egs. (15), (16), and (20).

In the case of the DIA, one may test the idea of a FDR by
introducing a modified response function R’(k;z,t"), such
that

Q(k;t,t")
Olkst' 1)

This quantity plays no part in the calculation. However, at
each stage, R’ can be calculated from the above relationship
and compared with the actual DIA response function R at the
same stage. It is this comparison that is the basis of the
observation that the FDR is quite a good approximation at
smaller wave numbers but is less good in the dissipation
range [20]. However, such a comparison assumes that the
DIA response equation is “right” and the FDR is “wrong”. In
fact we know that the DIA response equation does not pos-
sess the correct behaviour at large Reynolds numbers and
therefore cannot be a standard of comparison. In our view,
the comparison of DIA with LET is a fairer test of the use of
the FDR for turbulence.

Our derivation of the FDR [1] is correct to second order
in renormalized perturbation theory. Accordingly it is an ap-
proximation, but no more an approximation than the second-
order covariance equations (15) and (16). Therefore its use
with these equations, as in the LET theory, is entirely con-
sistent. Nevertheless, we should draw a distinction between
this situation and that in microscopic equilibrium systems,
where the linear form (27) holds to all orders in perturbation
theory.

An interesting feature of the present, nonequilibrium situ-
ation is that the relationship is local in wave number, despite
the fact that in principle all Fourier modes are coupled by the
Navier-Stokes equation. As we have indicated earlier, this
has its roots in the assumption that the response of the sys-
tem may be determined from an energy balance which is
local in wave number. Originally this particular approach
started out from a consideration of the energy flux (or trans-

R'(k;t,t') = (111)
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port power) through some particular mode [12] and is a
weaker assumption of localness than later became of interest
in the context of triad interactions (e.g., see [36—38]), and of
course the theory still contains integrals over all wave num-
bers and intermediate times. This structure is characteristic
of renormalized theories and implies the existence of effec-
tive short-range interactions. It would be interesting to see if
it can be understood in terms of the later studies of localness
of triad interactions and this will be the subject of further
work.

Last, in order to put our results in perspective, we shall
give a brief overview of the subject of spectral closures, and
expand on some points as promised earlier. In particular
there is another point of view about the failure of the pio-
neering Eulerian closures to be compatible with the Kolmog-
orov spectrum.

In this paper we have taken the view that this failure can
be seen as an infrared divergence in the response equation in
the limit of infinite Reynolds numbers; at least in the time-
independent formulation [39]. This may seem rather a severe
test but in reality it is just a way of diagnosing lack of scale
invariance in a theory. In contrast, Kraichnan, dealing with
the more complicated two-time formulation, attributed the
problem to a failure to distinguish in an Eulerian frame be-
tween convective and inertial transfer effects. In order to
circumvent this problem he introduced a Lagrangian-history
formulation of the DIA, based on a velocity field u(x,z|s)
which is defined to be the velocity at time s of a fluid particle
which was at x at time ¢. This gives a mixture of Lagrangian
(s is the measuring time) and Eulerian (7 is the labeling time)
characteristics and with four-time rather than two-time cor-
relation and response functions, the theory results in a set of
equations which are rather more complicated than those of
Eulerian DIA [40].

In order to produce a tractable set of equations, Kraichnan
made an abridgement which is based on setting ¢’ =t and s’
=t, leaving correlation and response functions with a mixed
two-time dependence on ¢ and s (see [41] for a more recent
justification). Later, simpler versions of Lagrangian-history
theories were produced, purely in terms of measuring times
[42,43], and these seem closer to Eulerian forms, in particu-
lar to the two-time form of the SCF theory [21].

It is our intention to return to these matters in more detail
when we are in a position to present calculations of the
single-time LET equations on standard test problems. We
believe that a significant result of our current line of ap-
proach can be to help clarify issues between the various the-
oretical approaches, some of which have been outstanding
for many years. However we should end with a caveat. All
the work presented here belongs to a class of theories based
on the second-order truncation of the renormalized perturba-
tion expansion of the Navier-Stokes equation. It should be
emphasized therefore, that, although these theories have a
general character, nevertheless they have no systematic
means of controlling or even estimating their own errors.
Thus although they seem to represent the best that we can do
at the moment, this caveat must be borne firmly in mind.
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